APPLICATION OF THE DUAL-PROCESS METHOD TO THE STUDY OF A CERTAIN SINGULAR DIFFUSION

BY

DAVID WILLIAMS

ABSTRACT. This paper should be regarded as a sequel to a paper by Holley, Stroock and the author. Its primary purpose is to provide further illustration of the application of the dual-process method. The main result is that if d>2 and φ is the characteristic function of an aperiodic random walk on \mathbb{Z}^d , then there is precisely one Feller semigroup on the d-dimensional torus with generator extending $A=\{1-\varphi(\theta)\}\Delta$. A necessary and sufficient condition for the associated Feller process to leave the singular point 0 is determined. This condition provides a criterion for uniqueness in law of a stochastic differential equation which is naturally associated with the process.

1. Introduction.

1.1. This paper should be regarded as a sequel to [4]; anyone reading it must realise that ideas of Holley and Stroock run throughout. The notation of [4] is used here.

The 1-dimensional story, which has many interesting features which have no counterpart in dimension $d \ge 2$, is told in full in [4]. We therefore assume throughout this paper that $d \ge 2$.

I wish to thank Professor D. W. Stroock and the referee for pointing out some errors in an earlier version of this paper.

1.2. Let T^d be the d-dimensional torus. Think of T^d as $[-\pi, \pi]^d$ with the obvious identification. For $\theta = (\theta_1, \theta_2, \dots, \theta_d) \in T^d$ (with $|\theta_k| \le \pi, \forall k$), put

$$|\theta| \equiv \left\{\sum \theta_k^2\right\}^{1/2}$$
.

(The symbol " \equiv " signifies "is defined to be equal to".) The character group of T^d is, of course, the d-dimensional integer lattice \mathbb{Z}^d . Write

$$e_{\mathbf{n}}(\boldsymbol{\theta}) = e_{\boldsymbol{\theta}}(\mathbf{n}) = e^{i\mathbf{n}\cdot\boldsymbol{\theta}} \quad (\mathbf{n} \in \mathbf{Z}^d, \boldsymbol{\theta} \in T^d).$$

Let $\{p_n: n \in \mathbb{Z}^d\}$ be a symmetric probability distribution on \mathbb{Z}^d so that (with the obvious parameter ranges)

$$p_{\mathbf{n}} = p_{-\mathbf{n}} \geqslant 0; \qquad \sum p_{\mathbf{n}} = 1.$$

Received by the editors August 6, 1976.

AMS (MOS) subject classifications (1970). Primary 60J35, 60J60; Secondary 60H10.

Key words and phrases. Dual process, diffusion, Markov chain, Feller property, Bochner map, stochastic differential equation, Girsanov's example.

Let φ be the characteristic function of $\{p_n\}$:

$$\varphi(\theta) \equiv \sum p_{\mathbf{n}} e_{\mathbf{n}}(\theta) \qquad (\theta \in T^d).$$

Make the aperiodicity assumption: $\varphi(\theta) = 1 \Rightarrow \theta = 0$. Put

$$\mathcal{L} \equiv [1 - \varphi(\theta)]\Delta, \quad \mathfrak{D}(\mathcal{L}) \equiv C^2(T^d),$$

where Δ is the Laplacian on T^d .

By a Feller version of $e^{t\mathcal{L}}$, we mean a positive contraction semigroup $\{T_t: t > 0\}$ on $C(T^d)$ such that

(1)
$$T_t f - f = \int_0^t T_s \mathcal{L} f \, ds, \qquad \forall f \in C^2(T^d).$$

Such a semigroup is necessarily strongly continuous on $C(T^d)$ and the point of (1) is that the infinitesimal generator of $\{T_t\}$ is an extension of \mathcal{L} .

THEOREM 1. There is precisely one Feller version of $e^{i\mathfrak{L}}$. We shall denote this unique Feller version by $\{T_i^F\}$.

[The analogue of Theorem 1 is false in the case when d = 1; in that case, infinitely many Feller versions of $e^{i\mathcal{L}}$ exist for certain \mathcal{L} . See [4].]

Let $\{\theta^F(t)\}$ be a (continuous, strong Markov) diffusion process on T^d which has $\{T_t^F\}$ as its transition semigroup. Away from 0, $\{\theta_t^F\}$ behaves as a "Brownian motion run at rate $2[1-\varphi\circ\theta(t)]$ ". Thus, if started away from 0, $\{\theta^F(t)\}$ will never hit 0. We see that 0 is either an absorbing point for $\{\theta^F(t)\}$ or else is a "pure entrance boundary" point for $\{\theta^F(t)\}$ which is left immediately never to be revisited. (The strong Markov property rules out the possibility that $\{\theta^F(t)\}$ stays at 0 for an exponential time and then leaves continuously.)

Set

$$I \equiv \int_{T^2} |(\log|\theta|)| [1 - \varphi(\theta)]^{-1} d\theta \quad \text{if } d = 2,$$

$$\equiv \int_{T^d} |\theta|^{2-d} [1 - \varphi(\theta)]^{-1} d\theta \quad \text{if } d > 3;$$

here $d\theta$ denotes the Haar measure on T^d .

THEOREM 2. The point 0 is absorbing for $\{\theta^F(t)\}\$ if and only if $I = \infty$.

We may translate Theorem 2 and the results established during its proof into the language of stochastic differential equations. To do this, we need to use the terminology of the important paper [7] by Yamada and Watanabe. Consider the stochastic differential equation

(2)
$$d\mathbf{x}_{t} = 2^{1/2} [1 - \varphi(\mathbf{x}_{t})]^{1/2} d\mathbf{b}_{t}, \quad \mathbf{x}_{0} = \mathbf{0},$$

where φ is now considered lifted from T^d to \mathbb{R}^d . As in [7], we understand by a

solution of (2) a set-up $(\Omega, \mathcal{F}, P; \mathcal{F}_t)$ and a pair $(\{\mathbf{x}_t\}, \{\mathbf{b}_t\})$ of continuous $\{\mathcal{F}_t\}$ adapted processes such that $\{b_t\}$ is an \mathbf{R}^d -valued Brownian motion relative to $\{\mathcal{F}_t\}$ and that (2) holds in the usual Itô sense. Note especially that a solution is not assumed to be 'strong' in the sense that (for each t) \mathbf{x}_t is measurable on the σ -algebra generated by $\{\mathbf{b}_s: s \leq t\}$.

We shall call a solution $(\Omega, \mathcal{F}, P; \mathcal{F}_t, \{\mathbf{x}_t\}, \{\mathbf{b}_t\})$ of (2) trivial if $P\{\mathbf{x}_t = \mathbf{0}, \forall t\} = 1$.

Theorem 3. A nontrivial solution of equation (2) exists if and only if $I < \infty$.

Because Yamada and Watanabe already give very tight generalised Hölder conditions for uniqueness of solutions to stochastic differential equations, the only real interest of Theorem 3 lies in the fact that $1 - \varphi(x)$ can have different asymptotic behaviour as $x \to 0$ from different directions. Against this must be weighed the facts that φ is positive-definite and that $1 - \varphi(x)$ is bounded below by a multiple of $|x|^2$ near 0. See Proposition 7.5 in Spitzer [5].

Here is a rather crude illustrative example. It only emphasizes once again that, for *singular* points in dimension $d \ge 2$, one cannot improve very significantly on Itô's Lipschitz condition for uniqueness.

EXAMPLE. We apply Theorem 3 to an equation reminiscent of Girsanov's famous example in [2]. Suppose that $0 < \alpha_k \le 1$ for k = 1, 2. Then the equation

$$d\mathbf{x} = \left\{ |x_1|^{2\alpha_1} + |x_2|^{2\alpha_2} \right\}^{1/2} d\mathbf{b}, \quad \mathbf{x}_0 = \mathbf{0},$$

has a nontrivial solution unless $\alpha_1 = \alpha_2 = 1$. (Inclusion of logarithmic terms could enliven the statement of the example, but the integrals become complicated. The points raised by Theorems 1-3 which are worth pursuing lie in other directions.)

1.3. The whole point of this paper is to show how results like Theorems 1, 2 and 3 may be proved by the dual-process method developed in [3], [4].

It is easily verified that

(3)
$$\hat{\mathbb{E}}e_{\mathbf{m}}(\boldsymbol{\theta}) = \hat{\mathbb{E}}e_{\boldsymbol{\theta}}(\mathbf{m}) \equiv \sum_{\mathbf{n}} \hat{\mathbb{E}}(\mathbf{m}, \mathbf{n})e_{\boldsymbol{\theta}}(\mathbf{n}),$$

where

(4)
$$\hat{\mathbb{C}}(\mathbf{m}, \mathbf{n}) \equiv |\mathbf{m}|^2 \mathcal{C}(\mathbf{m}, \mathbf{n}),$$

 \mathcal{C} being the 'generator' matrix of the $\{p_n\}$ random walk:

$$\mathscr{Q}(\mathbf{m},\mathbf{n}) \equiv p_{\mathbf{n}-\mathbf{m}} - \delta_{\mathbf{m},\mathbf{n}}.$$

Note that $\hat{\mathbb{C}}$ is a Q-matrix in the sense of chain theory. Let $\{\hat{T}_t^{\min}\}$ be the *minimal* transition function with Q-matrix $\hat{\mathbb{C}}$. The associated minimal chain $\{\mathbf{n}^{\min}(t)\} = \{\mathbf{n}_t^{\min}\}$ is the $\{p_n\}$ random walk "run at rate $|\mathbf{n}_t^{\min}|^2$ and killed at

the time ζ when \mathbf{n}_{l}^{\min} first reaches ∞ ". Note that $\mathbf{0}$ is an absorbing point for this chain.

Suppose that $\{T_i\}$ is a Feller version of $e^{i\ell}$. Then, for each t, T_i : $C \to C$, where C denotes $C(T^d)$. Hence T_i^* : $M \to M$ where $M = M(T^d) = C^*$ is the Banach space of Borel signed measures on T^d with finite total-variation norm; further, T_i^* : $M^+ \to M^+$, where M^+ denotes the set of positive measures in M. For $\mu \in M$, write

$$\hat{\mu}(\mathbf{n}) \equiv \int_{T^d} e_{\mathbf{n}}(\theta) \, \mu(d\theta),$$

and use the notation $(T_t^*\mu)^{\hat{}}$ for $\hat{\nu}$ where $\nu = T_t^*\mu$.

Theorem 1 hinges on the fact that for each t, the operator T_t^F is completely characterised by the duality relation:

(5)
$$(T_t^{F*}\mu)^{\hat{}} = \hat{T}_t^{\min}\hat{\mu} \qquad (\forall \mu \in M);$$

we say (see [4]) that $\{\hat{T}_t^{\min}\}$ is the *Bochner dual* of $\{T_t^F\}$. We shall use a perturbation argument to show that (for fixed t) \hat{T}_t^{\min} is a Bochner map, that is, \hat{T}_t^{\min} maps positive-definite functions to positive-definite functions. We can then use (5) to define the (positive) map T_t^F : $C \to C$.

- 2. Proof of Theorem 1.
- 2.1. Existence of $\{T_t^F\}$. For $\varepsilon > 0$, let $\mathcal{G}^{\varepsilon}$ be the strictly elliptic operator defined by

$$\mathcal{G}^{\epsilon} \equiv \mathcal{L} + \epsilon \Delta$$
 with $\mathfrak{D}(\mathcal{G}^{\epsilon}) \equiv C^{2}(T^{d})$.

Let **B** be a Brownian motion on T^d . Set

$$\tau^{\epsilon}(t) \equiv \frac{1}{2} \int_0^t \left[1 + \epsilon - \varphi(\mathbf{B}_s)\right]^{-1} ds,$$

$$\gamma^{\epsilon}(t) \equiv \inf\{s \colon \tau^{\epsilon}(s) > t\}.$$

Then $\{\theta^{\epsilon}(t)\} \equiv \{\mathbf{B} \circ \gamma^{\epsilon}(t)\}$ is a diffusion process on T^d . By Hunt-Lamperti-Yang weak-convergence methods [8], it is easy to show that the transition semigroup $\{U_t^{\epsilon}\}$ of $\{\theta^{\epsilon}(t)\}$ is Feller. By a well-known Dynkin-Volkonskii result, the infinitesimal generator of $\{U^{\epsilon}(t)\}$ extends \mathcal{G}^{ϵ} . That $\{U_t^{\epsilon}\}$ is the unique Feller version of $\exp(t\mathcal{G}^{\epsilon})$ either may be read off from deep results of Stroock and Varadhan [6] and Yang [8] or may be proved by the dual-process method of [4]. The idea of the latter method is that any Feller version $\{U_t^{\epsilon}\}$ of $\exp(t\mathcal{G}^{\epsilon})$ must be characterised by the fact that

(6)
$$(U_t^{\varepsilon*}\mu)^{\hat{}}(\mathbf{n}) = \hat{E}_n \left[\hat{\mu} \circ \mathbf{n}^{min}(t) \exp\left\{ -\int_0^t \varepsilon \left| \mathbf{n}^{min}(s) \right|^2 ds \right\}; \zeta > t \right],$$

where \hat{E}_n denotes expectation corresponding to starting-position n for the minimal $\hat{\mathbb{C}}$ chain $\{n^{\min}(t)\}$. (Recall that ζ is the explosion time for $\{n^{\min}(t)\}$.)

See [4] for a proof of (6), but note that (6) is "algebraically plausible" because of the relation

$$\mathcal{G}^{\epsilon}e_{\mathbf{n}}(\boldsymbol{\theta}) = \left[\hat{\mathcal{L}} - \epsilon |\mathbf{n}|^{2}\right]e_{\boldsymbol{\theta}}(\mathbf{n})$$

and the Feynman-Kac formula.

The dominated-convergence theorem shows that as $\varepsilon \downarrow 0$, the right-hand side of equation (6) converges to $\hat{T}_{\iota}^{\min}\hat{\mu}(\mathbf{n})$. Hence, for $\mu \in M(T^d)$, the weak* limit

(7)
$$T_{t}^{F*}\mu \equiv \mathbf{w}^{*}-\lim_{\epsilon \downarrow 0} U_{t}^{\epsilon*}\mu$$

exists and

(8)
$$(T_t^{F*}\mu)^{\hat{}} = T_t^{\min}\hat{\mu}.$$

From (7), each T_t^{F*} (t > 0) maps probability measures to probability measures. Suppose that $\{\mu_k\}_1^{\infty}$ is a sequence of elements of $M(T^d)$ such that $\mu_k \to \mu \in M$ in the weak* topology. Then, by the uniform-boundedness principle,

$$|\mu_k(\mathbf{n})| \leq ||\mu_k|| \leq \sup_k ||\mu_k|| < \infty.$$

Hence, by the dominated-convergence theorem, as $k \to \infty$,

$$(T_t^{F*}\mu_k)\hat{\ }(\mathbf{m}) = \hat{T}_t^{\min}\hat{\mu}_k(\mathbf{m}) = \sum_{\mathbf{n}} \hat{T}_t^{\min}(\mathbf{m}, \mathbf{n}) \,\hat{\mu}_k(\mathbf{n})$$
$$\rightarrow \sum_{\mathbf{n}} \hat{T}_t^{\min}(\mathbf{m}, \mathbf{n}) \,\hat{\mu}(\mathbf{n}) = \hat{T}_t^{\min}\hat{\mu}(\mathbf{m}) = (T_t^{F*}\mu)\hat{\ }(\mathbf{m}),$$

whence $T_i^{F*}\mu_k \to T_i^{F*}\mu$ in the weak* sense. Now put

$$T_{t}^{F}f(\theta) \equiv \int_{T_{d}} f(\alpha) (T_{t}^{F*}\delta_{\theta}) (d\alpha) \qquad (\forall f \in C(T^{d})),$$

where δ_{θ} denotes the unit mass at θ . Then T_t^F is easily seen to be a positive map from $C(T^d)$ to $C(T^d)$. See [4], where it is also shown that property (1) will follow for $\{T_t^F\}$ once we establish that

(9)
$$\hat{T}_{t}^{\min}\hat{\mu}(\mathbf{n}) - \hat{\mu}(\mathbf{n}) = \int_{0}^{t} \hat{\mathbb{C}}\hat{T}^{\min}\hat{\mu}(\mathbf{n}) ds \qquad (\forall \mathbf{n} \in \mathbf{Z}^{d}),$$

where $\mu \in M(T^d)$. However, it is an old result from chain theory that (9) will hold if $\hat{\mu}$ is an arbitrary element of $B(\mathbb{Z}^d)$.

We have now completed the proof of the existence of a Feller version $\{T_i^F\}$ of $e^{i\mathcal{E}}$ characterised by equation (8). Clearly, this 'existence' proof (unlike the 'uniqueness' proof to follow) works for d=1 too.

2.2. Uniqueness of $\{T_t^F\}$. Let $\{T_t\}$ be any Feller version of $e^{t\mathcal{L}}$. For $\lambda > 0$ and $f \in C \equiv C(T^d)$, put

$$R_{\lambda}f(\boldsymbol{\theta}) \equiv \int_{[0,\infty)} e^{-\lambda t} T_{t}f(\boldsymbol{\theta}) dt \qquad (\boldsymbol{\theta} \in T^{d}).$$

Then $R_{\lambda} : C \to C$ and, from (1),

$$R_{\lambda}(\lambda - \mathcal{L})f = f \quad (\forall f \in C^{2}(T^{d})).$$

Put $u_{\lambda \theta}(\mathbf{n}) \equiv R_{\lambda} e_{\mathbf{n}}(\theta)$. Then, with one use of Fubini's theorem,

$$\lambda u_{\lambda,\theta}(\mathbf{n}) - e_{\mathbf{n}}(\theta) = R_{\lambda} \mathcal{L} e_{\mathbf{n}}(\theta) = |\mathbf{n}|^{2} R_{\lambda} \mathcal{L} e_{\theta}(\mathbf{n})$$
$$= |\mathbf{n}|^{2} \mathcal{L} R_{\lambda} e_{\mathbf{n}}(\theta) = \hat{\mathcal{L}} u_{\lambda,\theta}(\mathbf{n}),$$

whence

(10)
$$(\lambda - \hat{\mathcal{L}})u_{\lambda,\theta}(\mathbf{n}) = e_{\theta}(\mathbf{n}).$$

Amply enough theory is known [6], [8] to enable one to prove rigorously that a diffusion process $\{\theta_t\}$ with transition semigroup $\{T_t\}$ will, while away from $\mathbf{0}$, behave as a Brownian motion run at rate $2[1 - \varphi(\theta_t)]$. Hence, using the hypothesis that the dimension $d \ge 2$, we deduce that if $\{\theta_t\}$ is started at a point $\theta \ne 0$, then $\{\theta_t\}$ will never hit $\mathbf{0}$. Furthermore, again using $d \ge 2$, it is clear from the time-substitution argument that for $\theta \ne 0$, the kernel $R_{\lambda}(\theta, \cdot)$ of R_{λ} is absolutely continuous with respect to the Haar measure. Hence, by the Riemann-Lebesgue lemma,

(11)
$$\lim_{n\to\infty} u_{\lambda,\theta}(n) = 0 \quad \text{for } \theta \neq 0.$$

By Feller's boundary theory [1] for chains, equations (10) and (11) imply that

(12)
$$R_{\lambda}e_{\mathbf{n}}(\boldsymbol{\theta}) = \hat{R}_{\lambda}^{\min}e_{\boldsymbol{\theta}}(\mathbf{n}) \quad \text{for } \boldsymbol{\theta} \neq \mathbf{0},$$

where $\{\hat{R}_{\lambda}^{\min}: \lambda > 0\}$ is the resolvent of $\{\hat{T}_{t}^{\min}\}$. Hence

(13)
$$T_{t}e_{n}(\theta) = \hat{T}_{t}^{\min}e_{\theta}(\mathbf{n}) \quad (\forall t, \mathbf{n}) \text{ for } \theta \neq \mathbf{0}.$$

Because $\{T_t\}$ is Feller, we can let $\theta \to 0$ in (13) and deduce that (13) also holds when $\theta = 0$. Hence $(T_t^*\mu)^{\hat{}} = \hat{T}_t^{\min}\hat{\mu}$ and (from (8)) $\{T_t\} = \{T_t^F\}$. The proof of Theorem 1 is complete. It should be noted that most of the proof is anticipated in [4].

3. Proofs of Theorems 2 and 3.

3.1. Recall that $\{\theta^F(t)\}$ denotes a diffusion process with transition semigroup $\{T_t^F\}$.

LEMMA 1. If the point **0** is not absorbing for $\{\theta^F(t)\}$, then

$$(14) \qquad \qquad \sum_{\mathbf{n}\neq\mathbf{0}} G(\mathbf{0},\mathbf{n}) |\mathbf{n}|^{-2} < \infty,$$

where G is the Green's function for the $\{p_n\}$ random walk.

PROOF. If $\mathbf{0}$ is not absorbing for $\{\boldsymbol{\theta}^F(t)\}$, then (as remarked earlier) the strong Markov property implies that $\mathbf{0}$ is left *immediately* by $\{\boldsymbol{\theta}^F(t)\}$. It follows easily that $R_{\lambda}^F(\mathbf{0}, \cdot)$ is absolutely continuous with respect to the Haar measure. Hence, from (12) (extended to $\boldsymbol{\theta} = \mathbf{0}$ via the Feller property) and the Riemann-Lebesgue lemma,

$$\begin{aligned} \hat{R}_{\lambda}^{\min} 1(\mathbf{n}) &= \hat{R}_{\lambda}^{\min} e_{\mathbf{0}}(\mathbf{n}) = R_{\lambda}^{F} e_{\mathbf{n}}(\mathbf{0}) \\ &= \int e_{\mathbf{n}}(\boldsymbol{\theta}) R_{\lambda}^{F}(\mathbf{0}, d\boldsymbol{\theta}) \to 0 \quad \text{as } \mathbf{n} \to \infty; \end{aligned}$$

in other words,

(15)
$$x_{\lambda}(\mathbf{n}) \to 1$$
 $(\mathbf{n} \to \infty)$, where $x_{\lambda} \equiv 1 - \lambda \hat{R}_{\lambda}^{\min} 1$.

Note that $0 < x_{\lambda} < 1$ and that, since **0** is absorbing, $x_{\lambda}(\mathbf{0}) = 0$. By Feller's theory of chains, $(\lambda - \hat{\mathbb{C}})x_{\lambda} = 0$. Hence

(16)
$$\mathscr{Q}(1-x_{\lambda})=-\lambda\eta_{\lambda},$$

where

(17)
$$\eta_{\lambda}(\mathbf{m}) \equiv |\mathbf{m}|^{-2} x_{\lambda}(\mathbf{m}) \qquad (\mathbf{m} \neq 0),$$

$$\equiv \lambda^{-1} \sum p_{\mathbf{n}} x_{\lambda}(\mathbf{n}) \quad (\mathbf{m} = \mathbf{0}).$$

[Digression. In the 1-dimensional case, the function η_{λ} plays an important role as the Laplace transform of an entrance law for $\{\hat{T}_{t}^{\min}\}$. See [4].]

Equation (16) shows that the function $1 - x_{\lambda}$ is excessive for \mathcal{C} . Hence, by the Riesz decomposition theorem (Spitzer [5]),

$$1 - x_{\lambda} = \lambda G \eta_{\lambda} + u_{\lambda}$$

where u_{λ} is \mathscr{C} -harmonic. (Actually, since u_{λ} is bounded harmonic, u_{λ} is constant by the Choquet-Deny theorem, and since $u_{\lambda}(\mathbf{n}) \to 0$ as $\mathbf{n} \to \infty$ (because of (15)), we have $u_{\lambda} = 0$.) From (15) and (17), $\eta_{\lambda}(\mathbf{m}) \sim |\mathbf{m}|^{-2}$ as $\mathbf{m} \to \infty$. We may therefore deduce (14) from the fact that $G\eta_{\lambda}(\mathbf{0})$ is finite.

3.2. Let

$$g(\theta) \equiv |(\log|\theta|)|, \text{ if } d = 2,$$

 $\equiv |\theta|^{2-d}, \text{ if } d > 3.$

Recall that

$$I \equiv \int g(\boldsymbol{\theta}) [1 - \varphi(\boldsymbol{\theta})]^{-1} d\boldsymbol{\theta}.$$

It is clear that we should work not with g (which is appropriate for \mathbb{R}^d) and I but with the appropriate modifications (h and J) for T^d . So let $q_i(\cdot, \cdot)$ denote the transition density function (with respect to the normalised Haar measure $d\theta$) of Brownian motion on T^d , and define

(18)
$$h(\theta) \equiv \int_{[0, \infty)} e^{-1} q_i(\mathbf{0}, \theta) dt,$$
$$J \equiv \int_{T^d} h(\theta) [1 - \varphi(\theta)]^{-1} d\theta.$$

The use of J is equivalent to that of I because $I = \infty$ if and only if $J = \infty$. This follows because there exist absolute constants K_d in $(0, \infty)$ such that

$$h(\theta) \sim K_d g(\theta)$$
 as $\theta \to 0$.

(Transfer the classical asymptotic formulae from \mathbb{R}^d to T^d by covering.)

LEMMA 2.

(19)
$$J = \sum_{\mathbf{n}} G(\mathbf{0}, \mathbf{n}) \left[1 + \frac{1}{2} |\mathbf{n}|^2 \right]^{-1} \le \infty$$

so that $J < \infty$ if and only if (14) holds.

PROOF. Since $\frac{1}{2}\Delta e_n(\theta) = -\frac{1}{2}|n|^2 e_n(\theta)$, it is clear that

$$\hat{h}(\mathbf{n}) \equiv \int e_{\mathbf{n}}(\boldsymbol{\theta})h(\boldsymbol{\theta}) d\theta = \left[1 + \frac{1}{2}|\mathbf{n}|^2\right]^{-1}.$$

Formally, Lemma 2 is therefore just Parseval's theorem, but we have to be a little careful with the rigour.

For 0 < r < 1, put

$$G_r(\mathbf{0}, \mathbf{n}) \equiv \sum_{k>0} r^k P_k(\mathbf{0}, \mathbf{n}) = \int e^{-i\mathbf{n}\cdot\boldsymbol{\theta}} [1 - r\varphi(\boldsymbol{\theta})]^{-1} d\theta,$$

where $P_k(\mathbf{0}, \mathbf{n})$ denotes the k-step transition probability from $\mathbf{0}$ to \mathbf{n} for the $\{p_{\mathbf{n}}\}$ random walk. We see that $[1 - r\varphi(\theta)]^{-1}$ has Fourier coefficients in $\ell_1(\mathbf{Z}^d)$. From this fact, it is easy to deduce that

$$\int h(\theta) [1 - r\varphi(\theta)]^{-1} d\theta = \sum_{\mathbf{n}} G_r(\mathbf{0}, \mathbf{n}) \hat{h}(\mathbf{n}).$$

(Recall that $G_r(0, \cdot)$ and $\hat{h}(\cdot)$ are both symmetric in n.) Now let $r \uparrow 1$ and note that $[1 - r\varphi(\theta)]^{-1}$ converges monotonically to $[1 - \varphi(\theta)]^{-1}$ on the "awkward" set on which $\varphi(\theta) > 0$. After trivial adjustments, an application of the monotone-convergence theorem now completes the proof of Lemma 2.

3.3. In view of Lemmas 1 and 2, Theorem 2 will follow once we establish

LEMMA 3. If $J < \infty$, then **0** is not absorbing for $\{\theta^F(t)\}$.

PROOF. Let **B** be a Brownian motion on T^d and set

$$\tau(t) \equiv \frac{1}{2} \int_0^t \left[1 - \varphi \circ \mathbf{B}(s) \right]^{-1} ds.$$

The assumption that $J < \infty$ implies that $E_0 \tau(\xi) < \infty$, where ξ is an exponentially distributed random variable of rate 1 independent of **B**. Thus τ

is a bona fide continuous additive functional. Put

$$\gamma(t) \equiv \inf\{s: \tau(s) > t\}.$$

Then $\{\theta(t)\} \equiv \{\mathbf{B} \circ \gamma(t)\}\$ is a diffusion on T^d which leaves $\mathbf{0}$ immediately. For $f \in C^2(T^d)$,

$$f \circ \mathbf{B}(t) - f \circ \mathbf{B}(0) - \int_0^t \frac{1}{2} \Delta f \circ \mathbf{B}(s) ds$$

is a martingale (for every starting position). Since $\gamma(t) \le 4t$, the optional-sampling theorem implies that

(20)
$$f \circ \mathbf{B} \circ \gamma(t) - f \circ \mathbf{B} \circ \gamma(0) - \int_{0}^{\gamma(t)} \frac{1}{2} \Delta f \circ \mathbf{B}(s) ds$$

is a martingale. However, the expression at (20) is exactly

$$f \circ \theta(t) - f \circ \theta(0) - \int_0^t \mathcal{E}f \circ \theta(s) ds.$$

Hence, if $\{T_i\}$ (acting on the space of bounded Borel functions on T^d) is the transition semigroup of $\{\theta(t)\}$, then

(21)
$$T_{s}f - f = \int_{0}^{t} T_{s} \mathcal{L}f \, ds \qquad (\forall f \in C^{2}(T^{d})).$$

Because of the singularity of \mathcal{C} at $\mathbf{0}$, the Hung-Lamperti-Yang weak-convergence method [8] fails to establish that $\{T_i\}$ has the Feller property. However, the dual-process method succeeds as follows.

Since $\{\theta(t)\}$ leaves $\mathbf{0}$ immediately, it is straightforward to prove that the resolvent kernel $R_{\lambda}(\theta, \cdot)$ of $\{\theta(t)\}$ has the absolute continuity property for every $\mathbf{0}$ in T^d . From this fact and (21), we can prove by the "Riemann-Lebesgue" argument in 2.2 that

$$T_{e_n}(\theta) = \hat{T}_{e_n}^{\min} e_{\theta}(\mathbf{n})$$

for all **n** and θ (including $\theta = 0$). Hence $\{T_t\} = \{T_t^F\}$ as required.

The proof of Theorem 2 is now complete.

3.4. There is no need to write out a proof of Theorem 3. We know that the condition " $I < \infty$ " is necessary and sufficient for 0 to be an entrance boundary point for the unique Markov semigroup on $T^d \setminus \{0\}$ with generator extending \mathcal{L} . Theorem 3 merely translates this fact into different language.

For the Example mentioned after the statement of Theorem 3, take d=2 and, for k=1, 2, introduce the function φ_k on T^2 as follows:

$$\varphi_k(\boldsymbol{\theta}) \equiv 1 - [1 - \cos \theta_k]^{\alpha_k} = \sum_{r \ge 1} c_{k,r} (\cos \theta_k)^r$$

where

$$c_{k,r} \equiv (-1)^{r+1} \binom{\alpha_k}{r}.$$

The condition $0 < \alpha_k \le 1$ implies that $c_{k,r} \ge 0$, so that φ_k is the characteristic function of a symmetric distribution (a kind of "discrete stable symmetric distribution of index $2\alpha_k$ ") concentrated on the kth axis. Define $\varphi(\theta)$ as the weighted mean:

$$\varphi_k(\boldsymbol{\theta}) \equiv (2^{\alpha_1} + 2^{\alpha_2})^{-1} \left[2^{\alpha_1} \varphi_1(\boldsymbol{\theta}) + 2^{\alpha_2} \varphi_2(\boldsymbol{\theta}) \right].$$

Then, as $\theta \rightarrow 0$,

$$1 - \varphi(\theta) \sim (2^{\alpha_1} + 2^{\alpha_2})^{-1} [|\theta_1|^{2\alpha_1} + |\theta_2|^{2\alpha_2}],$$

so that in a neighbourhood of 0, one may switch from a diffusion with generator extending \mathbb{C} to a diffusion with generator extending $\frac{1}{2}[|\theta_1|^{2\alpha_1} + |\theta_2|^{2\alpha_2}]\Delta$ via a time-transformation which is bounded on both sides by positive multiples of t. All that is required therefore is to check that $\int \log|\theta| d\theta/(|\theta_1|^{2\alpha_1} + |\theta_2|^{2\alpha_2})$ is infinite if and only if $\alpha_1 = \alpha_2 = 1$.

BIBLIOGRAPHY

- 1. W. Feller, On boundaries and lateral conditions for the Kolmogorov differential equations, Ann. of Math. (2) 65 (1957), 527-570. MR 19, 892.
- 2. I. V. Girsanov, An example of non-uniqueness of the solution of the stochastic equation of K. Itô, Teor. Verojatnost. i Primenen 7 (1962), 336-342 = Theor. Probability Appl. 7 (1962), 325-331.
- 3. R. Holley and D. Stroock, Dual processes and their application to infinite interacting systems, Advances in Math. (to appear).
- 4. R. Holley, D. Stroock and D. Williams, Applications of dual processes to diffusion theory, Proc. Sympos. Pure Math., vol. 31, Amer. Math. Soc., Providence, R. I., 1977.
 - 5. F. Spitzer, Principles of random walk, Van Nostrand, Princeton, N. J., 1964. MR 30 #1521.
- 6. D. W. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients. I, II, Comm. Pure Appl. Maith. 22 (1969), 345-400; ibid. 22 (1969), 479-530. MR 40 #6641; #8130.
- 7. T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations. I, II, J. Math. Kyoto. Univ. 11 (1971), 155-167; ibid. 11 (1971), 553-563.
- 8. W. Zh. Yang, On the uniqueness of diffusions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 247-261. MR 48 #7401.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY COLLEGE OF SWANSEA, SINGLETON PARK, SWANSEA SA2 8PP, WALES, GREAT BRITAIN